

Pierre Leroy

LES AMELIORATIONS

Étendue des résultats

- Force ionique maximale : 0,1 (LPL5) → 1 (LPL6) => utilisable pour les saumures
- Précision des corrections du TAC ainsi que du TA ou CO₂ libre (prise en compte de la température de mesure)
- Ajout de données (Baryum et Strontium)
- Saturations du gypse et de l'anhydrite, de BaSO₄, BaCO₃, SrSO₄ et SrCO₃
- Des traitements et réactifs ajoutés
- ➔ Ergonomie
 - Présentation : choix des couleurs des boutons, zoom de l'étape, ...
 - Aide sur chaque feuille avec la touche « F1 »
 - Nombre d'eaux : 2 dans la V5 🏓 99 dans la V6
 - Nombre d'étapes de traitements illimité et possibilité de variantes
 - Visualisation de la ou des filières par une arborescence
 - Graphique clair sur 4 étapes simultanées Zoom dynamique
 - Distinction entre traitements et évolutions
- → Qualité des sorties (graphique et rapport)
 - Image du graphique « qualité imprimeur »
 - Impression / exportation pdf du rapport à l'aide de « FastReport[®] »

PRESENTATION GENERALE

Bi Options Aff	arre de menus ré + Touches racco	duit à 5 purci F	euille d'étape			Arborescence	
Param Tempér Conduc PH TH TA TA CO ₄	n 6.0.1.01 s : 123456 Eau 01 Etape 0 metres Valeurs Unités me// brature 16,20 °C c 566,3 µ5/cm 464,2 c 26,00 °f 5,200 c 2,6,00 °f 5,200 HCO3 LPUWin 6.01.01 s : 123456 Eau 01 Etape 1	s Résultats Unités Equilibre Ca 5,632 me/l pH 7,45 5,618 me/l Δ pH -0,1 0,25 % Δ CaCO ₃ 0,0 0,20 mm0/l Δ OQ 0,0 199,63 mg/l TAC 16,4	CSt. Marbre Atmosphère Point T Unités 9 7,51 8,64 8,19 1 11 -0,09 1,04 - - 4,238 mq/l - - mmd/l 6 -0,18 mmol/l - - 43 16,01 16,43 5,55 °f		LPLWin Version 6.01.01 Arborescence Arborescence Eau 01 Bape 0 Saturato Imposé (1.00) (C02 = 2.59 mg/) Eau 01 Bape 1	V	
Caic Magr Sodie Pota Amm Fer D Mang Chiol Sulfa Nitra Nitra Nitra Sulfa Sulfa Sulfa Sulfa Sulfa	Paramètres Valeurs Unités me/l Température 16,20 °C °C Conductivité 566,2 µS/cm 464,2 PH 7,49 °C 7 TH 26,00 °f 5,20 TA 0,00 °f 7 CO, libre 0,25 mmol/l 0,25 Calcium 2,43 mmol/l 4,86 Magnésium 0,17 mmol/l 0,34 Potassium 0,99 mmol/l 0,98 Ammonium 0,09 mmol/l 0,08	Paramètres Résultats Unités Σ Cations 5,632 me/l Σ Anions 5,618 me/l Balance 0,25 % H_CO ₃ ^{**} 0,26 mmo/l HCO ₃ ^{**} 0,71 mg/l CO ₂ ^{***} 0,31 mg/l O CO ₂ Total 3,54 mmo/l/l Ca SatuRatio 1,00 Type Equibre SatuCO2 14,62 Texperiments Texperiments	Equilibre Ca Cst. Marbre Atmospher pH 7,49 7,49 8,64 Δ pH 0,00 0,00 1,15 Δ CaCo, 0,000 - 0,24 TAC 16,43 16,43 16,43 HCO [*] 0,26 0,26 0,02 HCO [*] 0,31 0,31 4,17 CO [*] 0,31 0,31 4,17 CO [*] 0,00 0,00 -0,3 Galcium 97,2 97,2 2,43 Self-Co [*] 14,62 1,00 -00	Point T Unités 8,19 mg/l mmol/l 5,55 5,55 of 67,77 mg/l 0,50 mg/l 1,12 mmol/l mmol/l 1,34			
Uni d'en Fichi	Fer Divalent mg/1 Manganèse mg/1 Chiorure 0,79 mmol/1 0,78 Sulfate 0,65 mmol/1 1,300 Nitrate 0,24 mmol/1 0,243 Fluorure mg/1 mg/1 1	Nom : Traiter Contraction Contraction Co	Saturatio 14,02 14,02 1,00 Saturatio 1,00 1,00 1,45 Type Equilibre Equilibre Calcifante Classe d'eau selon la réglementation : Eau à l'équilibre (Cl. 1) / Calcium (Cl. 1) Tratement : Saturatio Impos Reactif : CO2	1,00 1,00 Equilore			
	O. dissous 0,0 mg/l Baryum mg/l Strontium mg/l Unités Unités de sortie Fichier : C:\Users\LD\Downloads\Download	cuments\LPLWINLpw\ValidationPage	Dose de réactif : 2,59 mg/L Pureté : 100,00 %				

1

https://www.lplwin.f

/39

LE MENU « Fichier »

	Importation données Excel V LPLWin 6.01.3 Fichier Optic Affichage Fichier Optic Affichage Fichier Ouvrir Ctrl+N Ouvrir Ctrl+N Mouveau Ctrl+O Importer à partir de Fichier Excel (XI, XIs, XIsx) Autre	→ 10 Fichiers Excel récents
Toutes les eaux et étapes dans 1 seul fichier	Enregistrer Ctrl+S Enregistrer Sous Ctrl+A Enregister Tout Ctrl+T	lsx alyses_SIDERE.xlsx
3 exemples modifiables	Configuration Imprimante Configuration Imprimante Imprimer Ouvrir exemple Enregistrer Exemple	3-09-26.xls
➔ 10 fichiers LP6 ou lpw récents	Pradic Glas Bon 2014.lpw EauCalciumInfCapointT.LP6 eau de mer-ben farh.LP6 tout1.LP6 Quitter Ctrl+Q	
Luc Derreumaux Pierre Leroy	https://www.lplwin.fr /39	

L'AIDE « en ligne »

	PLW
Paramètres Valeurs Unités Température 60.0 °C Onductivité µS/cm PH 8.20 °C TH °F °F TA °F °C Colductivité µS/cm µS/cm Namesium 18.0 mg/l Sodium 940.0 mg/l Perassium 120.0 mg/l Ammonium 0.0 mg/l Ammonium 0.0 mg/l Norm: SMARA Valeur Norm: SMARA Nortice 0.0 mg/l Namanétee 0.0 mg/l Natrate 0.0 mg/l Natrate 0.0 mg/l Paroure 1.6 mg/l Natrate 0.0 mg/l Nontice 2.0 mg/l Nontice 0.0 mg/l Nontice 0.0 mg/l Nontice 0.0 mg/l Nontice 0.0 mg/l Nontice	<complex-block></complex-block>

L'ARBORESCENCE

LA FEUILLE DE SAISIE

LA FEUILLE DE RESULTATS

	2	Zoo	m + e feu	et – o ille	de la]					Les ti équili	rois bres		Équ CaC	ilibre O ₃ E1	avec CO ₂
4	LPLWin	6.01.3	1 s : 12345	56	Eta	ape 0	pe 0 (SMARA)									
	Paramèt	res	Valeurs	Unités		P	aramètres	Résultats	Uni	tés	Equilibre	Ca Cst.	Marbre	Atmosphère	Point T	Unités
	Températ	ture	60,0	°C		Σ	Cations	289,387	me/l		pН	6,23	6,56	8,97	7,72	
	Conducti	vité	9930,0	µS/cm	17.	Σ.	Anions	313,582	me/l		∆pH	-1,97	-1,64	0,77		
	рН		8,20		8,20	B	alance	-8,03	%		∆ CaCO ₃		-131,389			mg/l
	тн	c	335,67	٩f	67,13	H,	.co;	3,00	mg/IH2	2CO3*		4,86		-0,04		mM/I
	TA	c	0,58	٩f	0,115	H	003	323,5	mg/l		TAC	28,10	14,96	28,10	1,22	of
	TAC		28,10	٩f	5,620		D ₅ -	9,18	mg/l		H ₂ CO;	294,46	74,43	0,4	0,40	mg/IH2CO3*
	CO ₂ libre			mM/I		\mathbf{N}	0, Total	5,50	mM/l		HCO3	342,65	182,29	253,7	14,59	mg/l
	Calcium		490,00	mg/l	24,500			9,440	mM/I C	a	CO3-	0,1	0,12	41,96	0,14	mg/l
	Magnésiu	ım	518,00	mg/l	42,634	5	uRatio	87,45			CO ₂ Total	10,37	4,19	4,86	0,24	mM/I
	Sodium		5040,00	mg/l	219,130	Т	<u> </u>	Calcifiante			∆ CO₂T	214,00	-57,81	-28,16		mg/I CO2
	Potassiun	n	120,00	mg/l	3,077	Sa	atu O2	7,43			Calcium	490,0	437,44	490,0	382,47	mg/l
	Ammoniu	m	0,00	mg/l	0,000					_	SatuCO2	729,04	184,28	1,00	1,00	
	Fer Divak	ent	0,00	mg/l	0,000		iom : SM/	ARA			Saturatio	1,00	1,00	399,63	1,00	
	Manganè	99	0,00	mg/l	0,000						Туре	Equilibre	Equilibre	Calcifiante	Equilibre	
	Chlorure		7728,00	mg/l	217,690		\mathbf{y}	9	Traiter						-	
	Sulfate		4329,00	mg/l	90,188						Classe d'e	au selon la	a réglementa	tion :		
	Nitrate		0,00	mg/l	0,000		e (7	Indice	8		ustante	(u. 5) / Ca	aicium Ust.		
	Nitrite		0,00	mg/l	0,000											
	Fluorure		1,60	mg/l	0,084	ſ	<u> </u>		INFO.							
	O, dissou	s	8,0	mg/l	163,1	L	m) 4	abe 🖌								
	Baryum		0,03	mg/l	0,000			<u>9/n</u>		•					1	
	Strontium		2,00	mg/l	0,045				certitu	de		Dorc	onnali	isation		
												LCI2	Unnan	sation		
					Unités							de	s bou	tons		
				C	de sortie									cons		
Ajout du B	aryu	m							_							
ot du Stro	ntiun	ا _م														
et uu stro	nuun															
			2													
			2				https://	www.lnh								

Pierre Leroy

9

Pierre Leroy

LA FEUILLE D'INDICES

Ajout de l'indice	Indic	es et Constantes (Eau 01 Etape 0 (SMA	ARA))
de Stiff & Davis	Indices calcocarbo.	CO2 divers	Formes de l'ammonium
	Saturatio (>= 1) 20,19	CO2 équilibrant 4,85 mM/	NH4 Tot. 0,00 [NH2CI]
	Langelier (>= 0) 1,31	CO2 excédent4,61 mM/l	NH4 lon 0.00 0.00
	Ryznar (< 7) 4,92	CO2 agressif -1,18 mM/	(mggt-Glass
Aigut de la force	Stiff - Davis 1,332	Constantes d'équilibres	[NH3] 0,00 Ajout de la
Ajout de la lorce	Indices corrosivité	pKe 13,305 pKe' 13,038	Comparaison activités et pression partielle
ionique et de la	Larson (< 0.5) 54,94	pK1 6,294 pK1' 6,027	concentrations du CO
salinité	Leroy (0.7< <1.3) 0,08	pK2 10.141 pK2' 9.606	[H+] 3,928E-5 mM/ pHc
	Sola diasous at formo	pKs 8,738 pKs' 7,669	(H+) 2,887E-5 mM/ pH 7.5
	ionique	Contrati	
	Gels dissous 18,573 g/l	Conductivite	CO2
Correction du	Force ionique 0,380 M/	Cond Colo 10926 3 C à 60 0	Calcul du pH
	Stabler	Cond. Calc. 10320,5 C. a 60,0	
IAC	me/I	Correction du TAC	
	350 Ca	pH de virage 4,50 pH Equival	lent 4,317 a 20,0 °C TAC
	300- Mg	corrigé 28.1 °F TAC co	omigé 28,38 °f Δ = 0,28 °f
	250-	Correction du TA ou du CO2 libre	Correction du TA
Ajout des taux	200-	pH de virage 8.20 pH Equival	lent 8.117 à 20.0 °C au du CO2 libre
de saturation de			
Ba Sr ot CaSOA		non corrigé	mge $8,64$ mg/l $\Delta = -1,36$ mg/l
		Autres équilibres (Taux de Saturation	on)
	50-	BaSO4 0,947 SrSO4 0,155	CaSO4 (Anhydrite) 1,009
	₀┟═╤┛┖╧╤╼┻╯	BaCO3 0.000 SrCO3 0.021	CaSO4 2H2O (Gynse) 0.777
	Cations Anions	0,000	
Luc Derreumaux	2 http	s://www.lplwin.fr	

LES INFORMATIONS DE CALCUL

LPLWin5: Messages interrompant le calcul

LPLWin6: Tout est regroupé dans la feuille Information

LE GRAPHIQUE

Le graphique est maintenant un « graphique clair »

Possibilité de visualiser 4 eaux sur le même graphe

Pierre Leroy

LES OPTIONS DU GRAPHIQUE

LE pH SUR LE GRAPHIQUE

Les valeurs du pH d'équilibre

LE pH SUR LE GRAPHIQUE

La colorisation du pH

1

https://www.lplwin.f

LE pH SUR LE GRAPHIQUE

Les droites de pH

LE ZOOM DU GRAPHIQUE

IMPRESSION DES RAPPORTS DE CALCUL

LPLWin Version 6.01.31 Numéro de série : 123456

Compte rendu de	e calcul : Eau 01	l Etape 0 (Eau dessalée)
-----------------	-------------------	--------------------------

Température :	25,0	•c	77,0	•F			
pH :	4,80						
O2 dissous : (c)	8,1	mg/l	100	%Sat			
CO2 libre : (c)	57.66	ma/l	1.327	(23,0°C)			
TH:	0,05	۳.	0,03	*D	0,010	me/I	
TA: (C)	0,00	۳	0,00	•D	0	me/l	
TAC :	0,10	۳	0,06	•D	0,020	me/l	
Calcium :	0,001	mM/	0,02	mg/l	0,001	me/l	
Sodium :	0.271	mMA	6.24	mal	0.271	me/l	
Potassium :	0,011	mM/I	0,42	mg/I	0,011	me/l	
Ammonium :	0,0	mM/I	0,00	mg/l	0,000	me/l	
Fer Divalent :	0,0	mM/	0,00	mg/l	0,000	me/l	
Chiorure :	0.267	mMA	9.47	mol	0,000	mel	
Sulfate :	0,002	mM/I	0,16	mg/l	0,003	me/l	
Nitrate :	0,0	mM/I	0,00	mg/l	0,000	me/l	
Nitrite :	0,0	mM/	0,00	mg/l	0,000	me/I	
Barvum :	0,0	mM/	0,00	mg/l	0,000	men	
Strontium :	0,0	mMA	0,00	mg/l	0,000	me/l	
	-			-	-		
Som. Cations :	0,287	me/l		Som. Anions :	0,290	me/l	
H2CO3"	1.31	76 mMA	81.25	mg/I H2CO3	1.31	meil	
HCO3-:	0,036	mM/I	2,21	mg/l	0,036	me/	
CO3-:	0,0	mM/I	0,00	mg/l	0,0	me/l	
CO2 Total :	1,347	mM/I					
SatuRatio :	-0,01	mMA		SatuCO2 ·	95 11		
Type d'eau :	Agressive			Outdoor .	20,11	.+0	1
Type/Réglementation :	Eau agres	sive (Cl. 3) /	Calcium (ost.		TOXIC	,
Satu. Sels du Baryum :	BaCO3:	0,000		BaSO4:	0,000		
Satu. Seis du Submum .	51005.	0,000		51504.	0,000	mar	
-11 -	Equilibre a	prês essal a	u marbre	Data al la	0.05	Fund	
pH : Delta CaCO3 :	Equilibre a 7,66 1,217	près essai a mMA	u marbre 121 72	Delta pH :	2,86	Furnesique	
pH : Delta CaCO3 : TAC :	Equilibre a 7,66 1,217 12,27	près essal a mM/I T	u marbre 121,72 6,87	Delta pH : mg/l *D	2,86 0,002	ron classique	
pH : Delta CaCO3 : TAC : H2CO3" :	Equilibre a 7,66 1,217 12,27 0,116	près essai a mM/1 mM/1 mM/1	u marbre 121,72 6,87 7,21	Delta pH : mg/l *D mg/l H2CO3	2,86 0,002 5,11	mar cos Classique	
pH : Delta CaCO3 : TAC : H2CO3* : HCO3- :	Equilibre a 7,66 1,217 12,27 0,116 2,441	près essai a mM/ T mM/ mM/ mM/	121,72 6,87 7,21 148,91	Detta pH : mg/l mg/l H2CO3 mg/l H2CO3	2,86 0,002 5,11 2,44	rent coa Classique	
pH: Deita CaCO3: TAC: H2CO3": HCO3-: CO3-: CO2 Total:	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564	près essai a mM/ 역 mM/ mM/ mM/ mM/	u marbre 121,72 6,87 7,21 148,91 0,38 112,81	Delta pH : mg/l *D mg/l H2CO3 mg/l mg/l mg/l CO2	2,86 0,002 5,11 2,44 0,01	mat coz Classique	
pH: Delta CaCO3 : TAC : H2CO3" : HCO3-: CO3-: CO3-: CO2 Total : Delta CO2 Total :	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217	près essal a mM/I T mM/I mM/I mM/I mM/I mM/I mM/I	u marbre 6,87 7,21 148,91 0,38 112,81 53,56	Delta pH : mg/l *D mg/l H2CO3 mg/l mg/l CO2 mg/l CO2	2,86 0,002 5,11 2,44 0,01	men men men men	
pH : Deita CaCO3 : TAC : H2CO3" : HCO3-: CO3- : CO3- : CO2 Total : Deita CO2 Total : Calcium :	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218	près essai a mMA T mMA mMA mMA mMA mMA mMA	u marbre 6,87 7,21 148,91 0,38 112,81 53,56 48,71	Deita pH : mg/l *D mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l	2,86 0,002 5,11 2,44 0,01 2,435	mer mer mer mer mer	
pH : Delta CaCO3 : TAC: H2CO3': HCO3-: CO3-: CO2 Total : Delta CO2 Total : Cala CO2 Total : SatuCO2 :	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218 8,53	près essal a mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I	u marbre 6,87 7,21 148,91 0,38 112,81 53,56 48,71	Delta pH : mg/l *D mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l	2,86 0,002 5,11 2,44 0,01 2,435	mel mel mel mel	
pH: Dela CaCO3 : TAC : H2CO3" : H2CO3- : CO3- : CO2 Total : Delta CO2 Total : Calcium : SatuCO2 :	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218 8,53 Equilibre a	près essal a mM/I T mM/I mM/I mM/I mM/I mM/I mM/I wec le CO2 ;	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphé	Delta pH : mg/l *D mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l	2,86 0,002 5,11 2,44 0,01 2,435	men men men men	
pH: Delta CaCO3 : TAC : H2CO3': HCO3-: CO3-: CO2 Total : Delta CO2 Total : Calcium : SatuCO2 : PH : Deta CO2 :	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218 8,53 Equilibre a 6,53	près essai a mM/i mM/i mM/i mM/i mM/i mM/i mM/i mM/i	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphé	Delta pH : mg/l *D mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l fique Delta pH :	2,86 0,002 5,11 2,44 0,01 2,435	mer coz Classique mer mer mer	
pH: Della cacco3: TAC: H2CO3*: H2CO3*: HCO3-: CO2 Total: Della CO2 Total: Caldium: SatucO2: pH: Della CO2: pH: Della CO2:	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218 8,53 Equilibre a 6,53 -1,297	près essai a mM/I mM/I mM/I mM/I mM/I mM/I mM/I wec le CO2 : mM/I	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 almosphé -57,06	Delta pH : mg/l TD mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l fique Delta pH : mg/l mg/l mg/l	2,86 0,002 5,11 2,44 0,01 2,435	mel mel mel	
pH: Deta cacco3: TAC: H2C03': H2C03': HCO3': CO2 Tota1: Calcum: SatuCO2: PH: Deta CO2: TAC: TAC: TAC:	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218 8,53 Equilibre a 6,53 -1,297 0,10 0,014	près essal a mM/l mM/l mM/l mM/l mM/l mM/l wec le CO2 ; mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,06 0,85	Delta pH : mg/i "D mg/i H2CO3 mg/i CO2 mg/i CO2 mg/i CO2 mg/i Delta pH : mg/i "D mg/i H2CO3	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60	men men men men men	
pH: Dela cacco3: TAC: H2C03': HCC3-: CO3 CO2 Total: Dela CO2 Total: Caldum: SatuCO2: PH: Dela CO2: TAC: H2C03': HCC3-:	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,564 1,217 1,218 8,53 Equilibre a 6,53 Equilibre a 6,53 Contemport 1,297 0,10 0,014 0,02	près essai a mM/I T mM/I mM/I mM/I mM/I wec le CO2 ; mM/I T mM/I mM/I	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,06 0,85 1,24	Delta pH : mg/l "D mg/l H2CO3 mg/l mg/l CO2 mg/l Delta pH : mg/l "D mg/l H2CO3 mg/l	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,02	mel mel mel mel co2 mel	
pH: Dela cacco3 : TAC : H2C03 : H2C03 : CO2 Total : Dela CO2 Total : Calcium : Saturco2 : PH : Dela CO2 : TAC : H2C03 : H2C03 : HC03 : CO3 - ; CO3 - ;	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,554 1,217 1,218 8,53 Equilibre a 6,53 Equilibre a 6,53 0,10 0,010 0,010 0,02 0,02	prés essai a mM/l mM/l mM/l mM/l mM/l mM/l wec le CO2 ; mM/l mM/l mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,06 0,85 0,85 0,00	Detta pH : mg/i "D mg/i H2CO3 mg/i mg/i CO2 mg/i CO2 mg/i CO2 mg/i Detta pH : mg/i H2CO3 mg/i A2CO3 mg/i A2CO3 mg	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,02 0,00	mel mel mel mel	
pH: Deta cacco3: TAC: H2CO3: H2CO3: CO3- CO3-: CO2 Tota1: Caladum: SaturCO2: pH: Deta CO2: TAC: H2CO3: H2CO3: H2CO2: pH: Deta CO2: tAC: H2CO3: H2CO3: H2CO3: H2CO3: H2CO3: OC2: Tota1: CO3-: CO3:	Equilibre a 7,66 1,217 12,27 0,116 2,2441 0,006 2,564 1,217 1,218 8,53 Equilibre a 6,53 -1,297 0,10 0,014 0,02 0,014 0,02	prés essai a mM/l T mM/l mM/l mM/l mM/l mM/l mM/l T mM/l T mM/l T mM/l T mM/l T mM/l T mM/l T mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,06 0,85 1,24 0,00 1,49 0,00 1,49 -57,27 -57,27 -57,27 -57,26 -57,26 -57,21 -57,26 -57,26 -57,26 -57,26 -57,26 -57,06 -57,06 -57,27 -57,26 -57,27 -57,26 -57,27 -57,26 -57,26 -57,27 -57,26 -57,27 -57,26 -57,27 -57,26 -57,27 -57,27 -57,26 -57,27	Delta pH : mg/l "D mg/ H2CO3 mg/l mg/l CO2 mg/l Delta pH : mg/l "D mg/l H2CO3 mg/l mg/l H2CO3 mg/l mg/l CO2 mg/l co2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,02 0,00	mer co2 mer mer mer mer mer mer mer mer mer	
pH: Della cacco3 : TAC : H2C03 ': HCC3 -: CO2 Total : Della CO2 Total : Caldum : SatuCO2 : pH: Della CO2 : pH: H2C03 ': HCC3 -: CO2 Total : Della CO2 Total :	Equilibre a 7,66 0,116 2,217 12,27 12,27 2,256 1,217 2,2564 1,217 2,2564 1,217 8,53 Equilibre a 6,53 Equilibre a 6,53 Equilibre a 0,02 0,02 0,034 -1,313 0,001	prés essai a mM/l mM/l mM/l mM/l mM/l mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,85 1,24 0,00 1,49 -57,76	Delta pH : mg/l TD mg/l H2CO3 mg/l CO2 mg/l CO2 mg/l CO2 mg/l Delta pH : mg/l H2CO3 mg/l mg/l mg/l CO2 mg/l CO2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,60 0,60 0,60 0,60 0,60 0,02 0,00	mel mel mel mel mel	
pH: Della CaCO3 : TAC : H2CO37 : H2CO37 : Della CO2 Total : Caldum : SaturCO2 : PH: Della CO2 : TAC : Della CO2 : TAC : Della CO2 : CO3 - : CO3 Total : Saturãto: : Saturãto: :	Equilibre a 7,66 1,217 1,217 0,116 2,2441 0,006 4,2441 0,006 4,2441 1,217 1,218 8,53 Equilibre a 6,53 Equilibre a 6,53 0,01 0,014 0,02 0,02 0,034 -1,313 0,00	prés essai a mM/l mM/l mM/l mM/l mM/l mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,85 1,24 0,00 1,49 -57,76	Della pH : mg/l "D mg/l H2CO3 mg/l mg/l CO2 mg/l Della pH : mg/l "D mg/l H2CO3 mg/l mg/l H2CO3 mg/l mg/l CO2 mg/l CO2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,60 0,60 0,60 0,60 0,60 0,60	mel mel mel mel mel	
pH: Deta cacco3: TAC: H2CO3': HCCO3': HCCO3': Deta CO2 Tota1: Caldum: SatuCO2: pH: Deta CO2: TAC: H2CO3': H2CO3': HCC	Equilibre a 7,66 1,217 12,27 0,116 2,441 0,006 2,554 1,218 8,53 Equilibre a 6,53 -1,297 0,10 0,014 0,02 0,014 0,024 0,014 0,02 0,034 0,000 Agressive Equilibre a 2,56 1,313 0,000	prés essai a mM/i T mM/i mM/i mM/i mM/i mM/i mM/i mM/i mM/i	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,85 1,24 0,00 1,24 0,05 1,24 0,05 1,24 0,05 1,24 0,05 1,24 0,05 1,24 0,05 1,24 0,05 1,24 0,05 1,24 0,05 0,85 1,24 0,95 0,85 1,24 0,95	Detta pH : mgti mgti mgti mgti mgti coz mgti coz mgti coz mgti Detta pH : mgti Detta pH : mgti mgti mgti mgti coz mgti mgti coz coz mgti coz coz mgti coz coz mgti coz coz coz coz coz coz coz coz	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,50 0,02 0,00	mer coz mer mer mer mer mer mer mer mer mer mer	
pH: Dela cacco3: TAC: H2C03': HCC3-: CO2 Total: Co2 Total: Dela CO2 Total: Catoum: SatucO2: pH: Dela CO2: TAC: H2C03': HCC3-: CO3-i CO2 Total: Dela CO2 Total:	Equilibre a 7,66 0,116 1,217 1,217 1,217 1,217 1,227 2,564 1,218 8,53 Equilbre a 6,63 3,-1,297 0,10 0,014 0,02 0,014 0,00 Agressive Equilbre a 8,27	prés essai a mM/l mM/l mM/l mM/l mM/l mM/l wec le CO2 ; mM/l mM/l mM/l mM/l mM/l mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 112,81 112,81 112,81 0,38 48,71 atmosphe -57,06 0,85 1,24 0,00 1,49 -57,76 on ate de C	Della pH : mg/l TD mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l CO2 mg/l CO3 mg/l TD TD TD TD TD TD TD TD TD TD	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,60 0,02 0,00	mel mel mel mel	
pH: Deta cacO3 : TAC : H2CO3 : H2CO3 : HCO3 : CO2 Total : Caladum : SatuCO2 : pH: Deta CO2 : H2CO3 : Deta CO2 : H2CO3 : CO2 Total : Deta CO2 : H2CO3 : CO2 Total : Deta CO2 Total : SatuRatio : Type dreau : PH : Caladum :	Equilibre a 7,66 0,116 2,441 1,217 12,27 0,016 2,554 1,217 1,218 8,53 equilibre a 6,53 -1,297 0,10 0,012 0,02 0,0 0,02 0,034 -1,313 0,00 0,034 -1,313 0,00 0,034 -1,313 0,00 0,034 -1,313 0,00 0,034 -1,313 0,00 0,00 0,034 -1,313 0,00 0,00 0,00 0,00 0,00 0,00 0,00	prés essai a mM/i T mM/i mM/i mM/i mM/i mM/i mM/i T mM/i mM/i mM/i mM/i mM/i mM/i mM/i	u marbre 121,72 6,87 7,21 1,28 112,81 53,56 48,71 almosphé -57,76 0,06 0,05 1,24 0,00 1,49 -57,76 onate de C 23,14	Detta pH : mg1 TD mg1 H2CO3 mg1 mg1 mg1 CO2 mg1 CO2 mg1 CO2 mg1 CO2 mg1 CO2 mg1 H2CO3 mg1 H2CO3 mg1 CO2 mg1 CO2 mg	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,60 0,60 0,60 0,60 0,60 0,60	mer coc classique mer mer mer mer mer mer mer mer	
pH: Deta cacco3: TAC: H2C03: H2C03: CO3- C03-: C02 Tota1: Caldum: SatucO2: pH: Deta cO2: pH: Deta CO2: rAC: H2C03': H2C03': H2C03': H2C03': H2C03': Deta co2: Tota1: SatuRato: Type dreau: PH: PH: Deta Co2: CO3-: C02 Tota1: SatuRato: Type dreau:	Equilibre a 7,66 1,217 1,217 1,217 1,217 1,218 0,006 2,554 1,217 1,218 4,53 8,58 4,53 4,53 4,54 4,53 4,54 4,53 4,53 4,54 4,53 4,54 4,54	près essai a mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 13,56 48,71 atmosphe -57,06 0,06 0,85 1,24 0,00 1,24 0,00 1,24 0,00 0,45 -57,76 onate de (23,14 3,29 -57,76 -57,777 -57,777 -57,777 -57,777 -57,7777 -57,7777 -57,77777777777777777777777777777777777	Delta pH : mg/l mg/l mg/l mg/l mg/l co2 co2 mg/l co2 co2 mg/l co2 co2 mg/l co2 co2 mg/l co2 co2 co2 co2 co2 co2 co2 co2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,02 0,00 0,02 0,00 0,00 0,00 0,00	mel mel mel mel mel mel	
pH: Della CaCO3 : TAC : H2CO3 : H2CO3 : H2CO3 : CO2 Total : Co2 Total : Caldum : SatuCO2 : PH: Della CO2 : H2CO3 : H2CO3 : CO2 Total : Della CO2 Total : SatuRatio : Type dreau : PH: CO2 Total : CO2 Total :	Equilibre a 7,66 0,1217 1,217 1,217 1,217 1,217 1,217 1,217 1,218 8,53 2,554 1,217 1,218 8,53 2,554 1,217 1,218 8,53 0,00 0,014 0,02 0,034 -1,313 0,00 Agressive Equilbre a 8,27 0,578 5,88 1,175	prés essai a mM/l mM/l mM/l mM/l mM/l mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,06 0,85 1,24 0,00 1,49 -57,76 onate de C 23,14 3,29 51,74	Delta pH : mg/l "D mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l Delta pH : mg/l P H2CO3 mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l mg/l CO2 mg/l ng/l CO2 mg/l CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,00 0,02 0,00 (Point T) 1,157 0,001	mel mel mel mel mel	
pH: Deta cacco3: TAC: H2CO3': HCO3-: c03-: c02 total: catour: saturco2: pH: Deta CO2: Total: Deta CO2: Total: Deta CO2: Total: SatuRatio: Type dreau: pH: Catour: TAC: CO2 total: CO2 total: CO2 total:	Equilibre a 7,86 12,27 0,106 2,441 2,27 0,106 2,364 1,217 1,218 8,53 Equilibre a 6,53 Equilibre a 6,53 0,101 0,02 0,014 0,024 0,014 0,024 0,034 0,034 6,53 0,005 0,034 0,0578 5,88 1,175	près essai a mM/l mM/l mM/l mM/l mM/l mM/l mM/l mM/l	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphe -57,06 0,85 1,24 0,00 0,85 1,24 0,00 0,85 1,49 -57,76 onate de C 23,14 3,29 51,74	Detta pH : mg1 mg1 mg1 mg1 mg1 mg1 co2 co2 mg1 co2 co2 mg1 co2 co2 co2 co2 co2 co2 co2 co2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,60 0,60 0,02 0,00 (Point T) 1,157 0,001	meri meri meri meri meri meri meri meri	
pH: Dela cacco3: TAC: H2C03': HCC3-: C03-: C02 Total: Dela CO2 Total: caldum: SatuCO2: pH: Deta CO2: TAC: H2C03': H2C03': H2C03': H2C03': Deta CO2 Total: SatuRatio: Type dreau: pH: Calclum: TAC: Co2 Total: SatuRatio: Type dreau:	Equilibre a 7,66 1,217 12,27 0,116 2,2441 0,006 2,554 1,218 8,53 Equilibre a 6,53 -1,297 0,114 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,034 -1,313 0,02 0,02 0,034 -1,313 0,02 0,02 0,02 0,02 0,02 0,02 0,02 0,0	près essai a T T mM/I	u marbre 121,72 6,87 7,21 148,91 0,38 112,81 53,56 48,71 atmosphé -57,76 0,06 0,85 1,24 0,00 1,49 -57,76 onate de (0 23,14 3,29 51,74	Delta pH : mg/l mg/l mg/l H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l CO2 mg/l CO2 mg/l H2CO3 mg/l mg/l mg/l CO2 calcium et le CO2: mg/l co2 mg/l CO2 mg/l CO2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,00 0,00 0,00 (Point T) 1,157 0,001	mel mel mel mel mel mel	
pH: Della CaCO3 : TAC : H2CO3 : H2CO3 : H2CO3 : CO2 Total : Caldum : SatuCC2 : PH: Della CO2 : TAC : Della CO2 : TAC : Della CO2 : TAC : CO2 Total : Della CO2 Total : SatuRatio : Type dreau : PH : CO2 Total : Della CO2 Total : CO2 Total :	Equilibre a 7.86 12.27 0.116 2.241 2.256 4.2564 2.2564 1.217 1.218 5.33 Equilbre a 6.53 3.1297 0.014 0.014 0.014 0.034 -1.313 0.00 Agressive Equilbre a 8.27 0.578 5.588 1.176	près essai a mM/ TMM mM/ mM/ mM/ mM/ mM/ mM/ wec le CO2 ; mM/ T mM/ mM/ mM/ mM/ mM/ mM/ mM/ mM/	u marbre 121,72 6,87 7,21 149,91 0,38 112,81 53,56 0,08 0,06 0,07,76 1,24 0,77 0,776 0,7776 0,776 0,776 0,776 0,776 0,776 0,776 0,776 0,776	Delta pH : mg1 mg1 mg1 mg1 mg1 co2 co2 mg1 co3 mg1 co3 co3 mg1 co3 mg1 co3 co3 co3 co3 co3 co3 co3	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,50 0,50 0,50 0,50 0,50 0,50 0,50 0,5	mer coz mer coz mer mer mer mer mer mer mer mer mer mer	
pH: Deta cacco3: TAC: H2C03': HCC3-: CO2 Tota1: Caldum: SatuC02: pH: Deta C02: TAC: Deta C02: TAC: H2C03': H2C	Equilibre a 7,66 1,217 12,27 0,116 12,27 0,116 2,2,441 0,006 2,2,564 1,217 1,218 8,53 Equilibre a 6,53 -1,297 0,10 0,014 0,02 0,034 -1,313 0,00 Agressive Equilibre a 8,27 5,88 1,176	près essai a T T mM/I mM/I mM/I mM/I mM/I mM/I T mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I T mM/I	u marbre 121,72 5,87 7,21 149,91 10,38 112,81 112,81 112,81 112,81 112,81 112,81 112,81 112,81 112,81 112,81 114,92 1,24 0,05 0,85 1,24 0,05 0,85 1,24 0,05 0,85 1,24 0,05 0,85 1,24 0,05 0,85 1,24 0,05 0,85 1,24 0,05 0,85 1,24 0,05 0,85 0,85 0,95	Delta pH : mgti mgti mgti mgti mgti coz mgti Coz mgti Coz mgti Delta pH : mgti Delta pH : mgti mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,02 0,00 (Point T) 1,157 0,001	meri meri meri meri meri meri meri meri	
pH: Dela cacco3: TAC: H2C03': HCC3-: CO3 CO2 Total: Dela CO2 Total: Caldum: SatuCO2: PH: Dela CO2: TAC: H2CO3': H2CO3': HCC3-: CO3 CO2 Total: SatuRatio: Type d'eau: PH: Caldum: TAC: PH: Dela CO2: Tata: Dela CO2: Total: Dela CO2: Total: CO2 Total: Caldum: CO2 Total: Caldum: CO2 Total: CO2 Tota	Equilibre a 7,66 1,217 7,66 1,217 1,2.27 0,116 1,2.27 0,116 2,2.541 0,006 4,53 3,53 Equilbre a 6,53 3,53 Equilbre a 6,53 -1,297 0,124 0,02 0,0 3,44 -1,313 0,0,22 0,0 3,45 -1,313 0,0,22 0,0 3,578 Equilbre a 8,277 0,578 5,578 1,176	près essai a T T mM/I	u marbre 121,72 6,87 7,21 146,91 0,38 112,81 12,81 12,81 12,81 142,91 53,55 48,71 1,49 -57,76 0,85 1,24 0,00 0,85 1,24 9,57,76 1,49 -57,76 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,49 -57,76 1,24 1,24 2,24 2,24 2,24 2,24 2,24 2,24	Della pH : mg/l TJ H2CO3 mg/l mg/l CO2 mg/l CO2 mg/l CO2 mg/l TG mg/l CO2 mg/l CO2 mg/l CO2 mg/l CO2 mg/l CO2	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,0 0,60 0,60 0,60 0,60 0,60 0,60 0,60	mel mel mel mel	
pH: Dela CaCO3: H2CO3: H2CO3: H2CO3: CO2 Total: Caladum: SatuCC2: pH: Dela CO2: Total: Dela CO2: Total: Dela CO2: Total: Dela CO2: Total: Dela CO2: Total: Dela CO2: Total: SatuRatio: Type dreau: PH: CO2 Total: CO2 Total:	Equilibre a 7,66 1,217 12,27 0,116 2,2441 0,006 2,2564 1,217 1,218 8,53 Equilibre a 6,53 -1,297 0,10 0,10 0,10 0,10 0,10 0,10 0,10 0,1	près essai a T T mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I mM/I T mM/I T mM/I T mM/I T mM/I	u marbre 121,72 6,87 7,21 146,91 0,38 112,81 146,91 144,91 112,81 144,91 14	Delta pH : mgti TD mgti mgti mgti coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz mgti Coz	2,86 0,002 5,11 2,44 0,01 2,435 1,73 0,00 0,50 0,50 0,00 0,50 0,00 0,00 0,0	meri meri meri meri meri meri meri	

Rapport de calculs d'équilibres calcocarboniques

	Eau dessalée												
Paramètror	L					Eau 01 Etap	9 O						
Falameures	L	Valeu	ırs Saisies		Eq. Ca	Constant	Eq. N	larbre	Eq. CO	2 Gaz			
]	Valeurs	Unités	me/l	Valeurs	Unités	Valeurs	Unités	Valeurs	Unités			
Température :]	25,0	å										
Conductivité :]	42,1	µS/cm										
Conductivité à Temp Eau :		42,1	µS/cm										
pH :	11	4,80		4,80			7,66		6,53				
TH:	11	0,05	٩	0,010									
TA:	11		۴										
TAC :	11	0,1	٩	0,020			12,27	٩f	0,1	٩			
CO ₂ libre	11	1,33	mM/I	1,327									
Calcium :	11	0,02	mg/l	0,001			48,71	mg/l	0,02	mg/			
Magnésium :	11	0,05	mg/l	0,05									
Sodium :	11	6,24	mg/l	0,271									
Potassium :	11	0.42	mg/l	0,011									
Ammonium :	11	0.0	mo/l	0.000				10.00					
Fer divalent :	11	0.0	mo/l	0.000				17 m	24				
Manganèse :	11	0,0	mo/l	0.000		UF			96				
Chlorure :	11	9,47	mo/l	0.267			1 Ct						
Sulfate :	11	0.18	mail	0,003			ъE						
Nitrate :	11	0,10	mail	0,003			-	-60	Ort				
Nitrite :	41	0,0	mail	0,000					- 4				
Fluoruro :	11	0,0	mail	0,000			Xa		-				
riuorure .	41	0,0	mg/i	100		• •		An					
O ₂ DISSOUS	41	8,1	mgn	0.000				· • • •	61				
Baryum :	41	0,0	mg/i	0,000					_				
Strontum :	41	U,U	mg/i	0,000									
Somme Cations:	11	0,287	me/l										
Somme Anions :	41	0,290	me/I										
Balance :	41	-1,01	76										
Lambda :	41	-0,010											
Saturatio :	41	0,00							0,00				
Type :	11	Agressive					Equilibre		Agressive				
SatuCO2 :	41	96,11					8,53						
Delta pH :	11						2,86		1,73				
Delta CaCO ₃ :	11						121,717	mg/l					
H ₂ CO ₃ * :	11	81,25	mg/1 H ₂ CO ₃				7,21	mg/I H ₂ CO ₃	0,85	mg/I H ₂ CO			
HCO ₃ ":	11	2,21	mg/l				148,91	mg/l	1,24	mg/			
CO3*:]	0,0	mg/l				0,38	mg/l	0,0	mg/			
CO ₂ Total :		1,35	mM/I				2,56	mM/I	0,03	mM			
Delta CO ₂ Total :							53,56	mM/I	-57,76	mM			
Delta CO2 :]								-1,3	mg/			
	-					Eau (1 Etape 0						
Classe d'eau selon la rénie	me	entation			Fau	arressive	CL 3) / Cal	cium Cst					
Classe d ead seloit la regie		entation			Lau	agressive	ci. syr can	olulii OSC					
				Ea	u 01 Etape 0				-				
Indices			E	quilibre	avec CaCO	, et CO ₂		Autres	Equilibres				
Nom / Parametre		Valeur	Nom	Param	etre	Valeur	Non	n / Parametr	e V	aleur			
Saturatio		0,00	pН			8,27	BaCO ₃	Witherite)					
Langelier		-2,86	Calcium	(mg/l)		23,14	SrCO ₃ (Strontianite)				
			CO ₂ Tota	i : (mM/)	1,18	BaSO ₄	Baryte)					
Larson	_	7,47	TAC : (°f)		5,88	SrSO ₄ (Célestine)					
Leroy	_	2,00					CaSO ₄	(Anhydrite)					
Ryznar		10,52					CaSO ₄ ,	2 H ₂ O (Gyp	se)				
Ryznar Valeurs calculées Valeurs valeurs 13/09/2019 12:24:14	aur	10,52 utilisée	Valeurs c	orriaées Page	1/1		CaSO ₄ ,	2 H₂O (Gyp	LPL V6.	01.31 🤃			

Luc Derreumaux Pierre Leroy

LPLWin Version 6.01.31

Page 1

2

https://www.lplwin.fr

/39

OPTIONS

Pureté des réactifs

Aiout de la densité													
	🤼 Purete	é des Ré	actifs									_	
des solutions												_	
	Rei	actrs	The D	(Sol.)		Ré	actifs	Pureté %	CaCO3	%	D (Sol.)		
	50	diques				CaCO3, nl	ИgO	100,0	71,	2			
	NaC	н	40,0	1,430		CaCO3, nl	4gCO3	100,0	54,3	2			
	NaH	ICO3	100,0					Al203 (%)	n				
	Na2	003	100,0			Al2(SO4)3	, 18H2O	15,3					
	Na2	\$03	100,0			Polymèr	es d'Alum.	Al203 (%)	Basicit	é%			
	Ca	lciques				Poly Alum.	CI (PAC)	21,5	80,0	0	1,340	_	
	Ca(OH)2	100,0			Poly Alum.	SO4 (PAS)	30,0	45,0	0			
	CaC	:03	100,0										
	CaS	04	100,0		Réacti	fs Titr	e Init. (g/l)	Titre Util. (g/l)	NaOH 1	% D	(Sol.)	
	Cac	12 Isidaa	100,0		NaClO		110,0	110,	0	1,5	i	1,156	
		lades	20.0	149	Réact	fs	Cl2 (%)						
	HO	04	30,0	1,143	Ca(CIO)2		70,0						
	123	utres	50,0	,042									
	KMn	04	100.0		14 P						n /*		
Dessibilité de modifier	FeO	13	30,0	1,283	Valid	er		Annulei	·		Rei	nitiliser	
Possibilité de modifier													
une liste de réactifs			Aiouter un n	uveau Poh	Chlorn Sulfat	e d'Aluminiu	m						
une liste de reactifs				areaar og	or noro-odinat			Supprimer	un PolyCh	nloro Sulfa	te d'Alumini	um	
alumineux			Modifier les d	lonnées d'u	n réactif								
				Earna									
	Fabric	ant	Nom commercial	(L/S)	Densit	é % Al2	2O3 Basic	té % CI-	% SO4	2	Ca2+	% Mg2+	% Na+
			PAX-XL 7A	L	1.2	9.1	65	10	1.1	2.1		0	0,28
		1	PAX-XL6	L	1.21	9.82	50	16.6	2.2	1		0	4.02
		_	Contribution	dama dan d	and A offer	diama di				_			
			Controler les	donnees du	a produit sele	cuonne							
						•	nnuler le de	emier			Annuler to	oute la	
						1	produit sa	isi			saisie et F	ermer	
										_			
									-				

Ajout d'un réactif alumineux (Dose, Saturatio, TAC ou pH imposés)

Ajout d'un réactif alumineux

Paramètres	Valeurs	Unités	me/l	Paramètres	Résultats	Unités	Equilibre	Ca Cst.	Marbre	Atmosphère	Point T	Unités		
Température	12,8	°C		Σ Cations	5,759	me/l	pН	7,51	7,51	8,68	8,24		E.	
Conductivité	539,8	µS/cm	406,7	ΣAnions	5,573	me/l	ΔpH	0,01	0,00	1,17			Ĭ	
рН	7,51			Balance	3,29	%	∆ CaCO ₃		0,270			mg/l		
тн	25,70	٩f	5,14	H ₂ CO;	18,80	mg/I H2CO3*	∆ CO₂	0,00		-0,28		mM/I		
ТА		٩f		HCO3	230,74	mg/l	TAC	18,97	19,00	18,97	6,61	٩		
TAC	18,97	٩f	3,794	CO3-	0,34	mg/l	H₂CO;	18,56	18,63	1,2	1,20	mg/I H2CO3*		
CO ₂ libre	0,30	mM/l	0,297	CO ₂ Total	4,09	mM/I	HCO3	230,73	231,02	221,3	80,60	mg/l		
Calcium	95,71	mg/l	4,786	λ	0,496	mM/I Ca	CO3-	0,34	0,34	4,85	0,62	mg/l		
Magnésium	4,30	mg/l	0,354	SatuRatio	0,99		CO ₂ Total	4,09	4,09	3,73	1,33	mM/I	H	
Sodium	11,79	mg/l	0,513	Туре	Agressive		∆ CO ₂ T	-0,17	0,12	-15,98		mg/I CO2		
Potassium	2,80	mg/l	0,072	SatuCO2	15,61		Calcium	95,71	95,82	95,71	46,26	mg/l		
Ammonium	0,50	mg/l	0,028	Nem : F	1.0		SatuCO2	15,41	15,47	1,00	1,00			
Fer Divalent	0,20	mg/l	0,007	Exer	nple 2		Saturatio	1,00	1,00	14,15	1,00			
Manganèse		mg/l					Туре	Equilibre	Equilibre	Calcifiante	Equilibre			
Chlorure	27,00	mg/l	0,761				Classe d'a		a réalomor	tation :	_			
Sulfate	27,09	mg/l	0,564				Fau à l'	au seion i équilibre	(CI 1) /	Calcium Cet			E	
Nitrate	28,00	mg/l	0,452					-quinor C	(51. 1)7	ourorum cot.				
Nitrite	0,10	mg/l	0,002				Traitemen	t:	Dos	e Imposée				Dose exp
Fluorure		mg/l					Reactif :		AQU	JALINC F1				
O ₂ dissous	9,1	mg/l	85,3				Dose de ré	actif :	25.0) ma/L (20.00 c	m3/m3)			en mg/l
Baryum		mg/l					Alaoa (ad		23,	- nigre (20,00 C	mojmoj			m cm ³ /i
Strontium		mg/l					AI2O3 (%)		9,6	0 70				
							Basicité		66,	00				
							Densité de	la solutio	n: 1,2	50				

Décarbonatation

<u> ()</u> LPLW	/in 6.01.31							Ajout des résines	
Fichier	Options Affich	age Fen	lêtres	Aide				ationiques faibles	
j 🗋 📂									
	1								
🛛 🍊 u	🔔 LPLWin 6.01.31 :	s : 123456	Ear	u 02 Etap	e 0 (Exemple)			LPLWin 6.01.31 Traitement of Etape 0	
Pa	Paramètres	Valeurs	Unités	me/l	Paramètres	Résultats	Unités	Type de Simulations	
Te	Température	12,8	°C		Σ Cations	5,720	me/l	Traitements O Evolutions	
Co	Conductivité	535,0	µS/cm	403,0	Σ Anions	5,534	me/l		
pH	рH	c 7,58			Balance	3,31	%	Liste des Traitements Types d'Adoucissements TAC Final	
TH	TH	25,00	٩f	5,000	H ₂ CO;	15,94	mg/IH2CO3*	SatuRatio imposé A la chaux	
TA	TA		٩f		HCO ₃	233,48	mg/l	Mise à un TAC imposé Electrolytique	
TA	TAC (pH 4,5)	19,10	٩f	3,841	CO3-	0,41	mg/l	Mise à un pH imposé Résine sodique	
00	CO ₂ libre (pH 8,2)	0,23	mM/I	0,248	CO ₂ Total	4,09	mM/I	Décarbonatation ou adoucissement Résine H+ faible 🔍 T	
Ca	Calcium	95,10	mg/l	4,755	λ	0,457	mM/I Ca	Satu CO2 imposé	
Ma	Magnésium	4,30	mg/l	0,354	SatuRatio	1,19		Aération-Défemisation O *D	
So	Sodium	11,60	mg/l	0,504	Туре	Calcifiante		Nitrification biologique	
Po	Potassium	2,80	mg/l	0,072	SatuCO2	13,23			
An	Ammonium	0,50	mg/l	0,028	Nom : Eur	mala 2			
Fe	Fer Divalent	0,20	mg/l	0,007	Exe	mpie z			
Ma	Manganèse	0,00	mg/l	0,000			Traiter	Appliquer Annuler	
Ch	Chlorure	24,00	mg/l	0,676	12 1		maiter		
Su	Sulfate	27,00	mg/l	0,563					
Nit	Nitrate	28,00	mg/l	0,452			ndices		
Nit	Ntrite	0,10	mg/l	0,002				Le TH etant supeneur au TAC, le TAC final doit etre compris entre 19,21 T et le TAC minimum (U)	
FL.	Fluorure	0,00	mg/l	0,000					
0,	O ₂ dissouls	9,1	mg/l	85,2		obe			
Ba	Baryum	0,00	mg/l	0,000		1 <mark>7/2</mark> h	certitude		
Str	Strontum	0,00	mg/l	0,000					
L ď	Unités d'entrée		U de	hitės sortie					
							Messa	age donnant les	
							va	leurs limites	

Reminéralisation

C LP Fich	LWin 6.01.31 hier Option	15	Afficha	ige l	Fenêtres	Aide							
	🗁 🔚 🕣	.31	s : 12345	i6	Eau 01 E	tape 0 (Eau de	essalée)		2	réactifs a	ajoutés 📃		
L	Paramètros		Valoure	Unitán	mo/l	Paramètros	Péquitate	Ibitác	🔔 LPLWin 6.01.31 T	raitement de l'Eau (fo		
	Température		25.0	ornies or	men	Σ Cations	0.287	mel	Trans de Caudation				
	Conductivité	c .	42 1	uS/cm	42.1	Σ Anions	0.200	me/	Type de Simulations				
	pH	-	4 80	portan	4.80	Balance	-1.01	9/o	Traitements	 Evolutions 			
	тн		0.05	of	0.010	H.CO.	81.25	mg/ H2CO3*	Linte des Teste		Linte days	Calation final	Durat ((%)
	TA			of		HCO;	2.21	ma/	Liste des Traitements		Liste des H		Furete (%)
	TAC	- (0.10	of	0.020	CO3-	0.0	mg/	SatuRatio impose	osée	CO2 + CaCO3 $CO2 + CaCO3$		100,00
	CO, libre	c	1.33	mM/l	1.327	CO. Total	1.35	mM/l	Mise à un TAC impos	é	CO2 + CaCO3, n, CO3	Unité	
	Calcium	- (0.02	ma/l	0.001	λ.	-0.010	mM/I Ca	Mise à un pH imposé		CO2 + CaCO3	● ma/1	
	Magnésium		0.05	ma/l	0.004	SatuRatio	0.00		Satu CO2 imposé		CaCO3 + Aeration CaCO3 pMgCO3 + Aération		
	Sodium	(6,24	mg/l	0,271	Туре	Agressive		Aération-Déferrisation	n		O me/i	Paramètre cible
	Potassium	(0,42	mg/l	0,011	SatuCO2	96,11					○ mM/I	[Ca] [Ca]
	Ammonium	(0,00	mg/l	0,000								ОТН
	Fer Divalent	(0,00	mg/l	0,000	Nom : Eau	dessalée						0
	Manganèse	(0,00	mg/l	0,000						Saturatio Final	_	Орн
	Chlorure	9	9,47	mg/l	0,267	\mathcal{P}	\bigcirc	Traiter	A E				○ TAC
	Sulfate	(0,16	mg/l	0,003				Appliquer	Annuler		uratio :	
	Nitrate	(0,00	mg/l	0,000	മപ	2	Indices					
	Nitrite	(0,00	mg/l	0,000				Le Celeium	Contrate the second		la dass minimala da Ca	C02/2214 - 14
	Fluorure	(0,00	mg/l	0,000	는 수 년		INFO.	Calcium de	l'eau à l'équilibre ann	s entre celui de reau additionnee de ès contact avec CaCO3 (48.71 mg.	e la dose minimale de Ca 1).	CU3 (Z3, 14 m et le
	O ₂ dissous	c (8,1	mg/l	100	Y TY	abe P			a contraction of the			
	Baryum	(0,00	mg/l	0,000		2/1	acortitudo -					
	Strontium	(0,00	mg/l	0,000	\mathbf{v}			,				
	Unités d'entrée			U de	nitės sortie			M	ssage donna	ant les			
				_									Lu TAC dans le
									valeurs limi	tes			
												parar	nètres cibles

2

TRAITEMENTS

Mélanges

Le nombre d'eaux ou étapes entrant dans le mélange n'est plus limité

Paramètres	Valeur	Unités	me/l	Paramètres	Résultats	Unités	Equilibre	Ca Cst.	Marbre	Unités	Equilibre	Atmosphère	Unités	
Température	12,9	°C		Σ Cations	43,924	me/l	pН	7,66	7,64		pН	8,64		
Conductivité	4237,1	µS/cm	3199,4	Σ Anion s	43,808	me/l	ΔpH	0,08	0,07		ΔpH	1,06		
pН	7,576			Balance	-0,26	%	∆ CaCO,		3,457	mg/l	ΔCO ₂	-9,913	mg/l	
TH	59,5	°f	11,900	H ₂ CO;	15,221	mg/I H2CO	TAC	20,07	20,42	°f	TAC	20,07	°f	
ТА		°f		HCO3	243,687	mg/l	H ₂ CO;	12,599	0,0	mg/I H2CO	H ₂ CO;	1,254	mg/I H2CO	
TAC	20,07	°f	4,014	CO3"	0,574	mg/l	HCO ₃	243,443	0,0	mg/l	HCO3	231,895	mg/l	
CO ₂ libre	10,376	mg/l	0,236	CO ₂ Total	186,997	mg/ICO2	CO32-	0,692	0,684	mg/l	CO3-	6,305	mg/l	
Calcium	108,634	mg/l	5,432	λ	0,709		CO ₂ Total	185,047	188,519	mg/ICO2	CO, Total	172,782	mg/ICO2	
Magnésium	78,585	mg/l	6,468	SatuRatio	0,83		∆ CO₂T	-0,044	0,035	mM/I	∆ CO₂T	-0,323	mM/I	
Sodium	722,899	mg/l	31,430	Туре	Agressive		Calcium	108,634	110,016	mg/l	Saturatio	9,11		l I
Potassium	21,775	mg/l	0,558	SatuCO2	12,13		SatuCO2	10,04	0,00		Туре	Calcifiante		
Ammonium	0,05	mg/l	0,003	Nom : EN	P 16/01/20	14	Traitement		Mélang		Equilibre /Ca	CO3 FT CO2	(Point T)	
Fer Divalent	0,56	mg/l	0,020		10/01/20				inclaring a	- (0.00	1
Manganèse	0,0	mg/l					Eau 02 Eta	pe 2	15,00 %	6	Calcium (mo	n)	61.072	
Chlorure	1281,743	mg/l	36,105	\sim	<u>~</u>		Eau 02 Eta	pe 3	10,00 %	6	Calcium (ing	//) ()2)	73.061	
Sulfate	160,16	mg/l	3,337			the state of the s	Eau 02 Eta	pe 4 V 1.2	10,00 %	6		02)	9.41	X
Nitrate	20,227	mg/l	0,326			ndices	Eau 02 Eta	pe 5 V 1.2	40,00 %	6			0,11	li -
Nitrite	0,05	mg/l	0,001				Eau 03 Eta	pe 0	5.00 %		Autres équi	libres	Saturation	
Fluorure	0,456	mg/l	0,024	Traiter			Eau 04 Eta	ne ()	20.00.9	4	BaSO4 (Bary	/te)	2,174	
O ₂ dissous	10,2	mg/l	95,7					peo	20,00 /	0	BaCO3 (Whi	thérite)	2,000	1
Baryum	0,026	mg/l	0,000	F pe 3 (EN	P 16/01/2014)									
Strontium	0,54	mg/l	0,012	=eCl3 = 2	25 mg/l)									
Unités d'entre	ie i	Unités		Fichi mossée (2 (ENP 16/01/2) NaCIO - CI2 = =	5 mg /l)								
	~			au 02 Eta	pe 4 V 1.2 (ENP	16/01/2014)								
Classe d'eau s	elon la réglem	entation :	Eau à l'é	quilibre 🛛 Satura	itio Imposé (1,20) (CO2 = 0.421 mg/l)								
				Þ 🌢 🧧	au 02 Etape 5 V	1.2 (ENP 16/01/201	4) %) + Env 02 Place (2 (10 00 %) · Emu	02 Phase 4 1/ 1 2 /	0.00 %) · Em 02 Pt	THE F V 1 2 /40 00 %	· Eau 02 Plane 0/	(5.00 %) · Em. 04 De	0 (20 00 1
					Fau 02	Etape 6 V 1 2 (ENP 1	6/01/2014)	3 (10,00 %) + Edu	02 Ltdpc + V 1.2 (1	0,00 %) + Edu 02 El	ape 5 V 1.2 (40,00 %)	+ Lau US Llape U ((3,00 %) + Edd 04 Etd	e 0 (20,00 ×
				re à Ca C	onstant (CO2 =	2,3 mg/l)	0/01/2014)							
				au 02 Eta	pe 4 V 1.2-1.3 (f	ENP 16/01/2014)								
				onstant (C	:02 = 9,2 mg/l)									
				pe 3 V 2.	2 (ENP 16/01/2	014)								

Mélange de 2 eaux calcifiantes 🗲 2 eaux à l'équilibre

Pierre Leroy

SUR LE GRAPHIQUE

Luc Derreumaux Pierre Leroy

https://www.lplwin.f

EVOLUTIONS

Cas d'une eau de mer

Évolution: équilibre avec CaSO₄ et CaCO₃

Luc Derreumaux Pierre Leroy

EVOLUTIONS

Cas d'une eau de mer

2

Importation des résultats d'analyses d'un fichier Excel, calculs d'équilibres et exportation des résultats vers Excel

<u> </u> LPLWin	6.01.02										
Fichier	Options	Affichage Fenêtres Aide									
i 🗋 💕 I	Affic	hage et Impression									
	Calc	ul									
	Unite	és d'entrée									
	Unités de Sortie										
	Pure	Pureté Reactifs									
	Impo	ortation depuis fichier Excel									
	Impo	ortation/exportation automatique Excel									
	Grap	hique									
	Ince	rtitudes									
	Lang	jue									
	_										

La feuille d'options

🌉 Options d'impo	rtation/exportation auto	matique d'	un fichier Ex	cel								
Définition des paran	nètres d'importation				Définition des par	amètres d'exportation						
Nombre de paramé	tres analysés par échantillo	n: 11		Configution du tableau	Equilibre	à Calcium constant	Résulta	ats d'ana	lyses en me/l		Caractéristiques	des eaux
Paramètres des de	osages et de calcul				Nom	Libellé	1	Nom	Libellé		Nom	Libellé
	Vos noms de paramètres	Vos unités	Equivalent	N° L/C Noms Paramètres 1 🛓	🗹 рН	pH équi Ca Ct	Condu	cà Teau			Total Cations	Total Cations
	Température de l'eau	°C =	°C	N° L (C dea Péaultata 2	Delta pH	Delta pH équi Ca Ct	pH cal	culé			Total Anions	Total Anions
Conductivité	Conductivité à 25°C	uS/cm =	µS/cm		Delta CO2	Delta CO2 équi Ca Ct			TH (me/l)		Balance ion.	Balance ionique
🗹 рН	pH			N° L/C Identifiant							CO2 Total	
ПТН	ТН	۴ =	٩	principal des echantillons 🐃 💌	H2CO3*			omigé	TAC corrigé (me/l)	- ≚	Saturatio	Saturatio
	τ.	۰ د	er e					ore .	CO2 libre (mmol/l)	-115	Type (LPL)	Type
			T			CO2 total équi Ca Ct		ll eium			Classe Regiemen	uasse d eau regie.
	Titre Alcalimétrique Con	°F =	f	_		Delta CO2 Total ég		sium s	Sodium (me/l)	-		
CO2 libre	CO2 libre	mg/l =	mg/l	✓ Identifiant Secondaire		Deita CO2 Total eq	Potass	' ium	Potassium (me/l)	F	ichier Cible Exce	1
Calcium	Calcium	mg/1 =	mg/l	N° L/C identifiant	Equilibre		Ammor	nium	r otabolari (incri)		om du Fichier Cible	Excel
Magnésium	Magnésium	mg/1 =	mg/l	secondaire	Nom	Liballá	Fer div	alent			ichier-type-2.xls	x
Sodium	Sodium	ma/l =	ma/			nH équi marbre	Manga	nèse			Nouveau Fichi	er Excel
Determine	D		- ingri		Deta oH	Delta nH équi marbre	Chlorur	e	Chlorures (me/l)	R	épertoire du fichier	cible
	Potassium	mg/i =	mg/I		Delta CaCO	3 Delta CaCO3 équi	Sulfate		Sulfates (me/l)	6	uments Professi	onnels\CIFEC\
	Chlorures	mg/1 =	mg/l	Paramètres de dosage et de calcul		TAC équi marbre	Nitrate		Nitrates (me/l)	N	om de Feuille Cible	Excel
Sulfate	Sulfates	mg/l =	mg/l		H2CO3		Nitrite				utput lims	
✓ Nitrate	Nitrates (en NO3)	mg/1 =	mg/l	Options de Calcul	HCO3		Fluorur	e			Nouvelle Feuil	le Excel
O2 dissous	Oxyaène Dissous	ma/1 =	ma/l		CO3		O2 dise	sous				
					CO2 Total	CO2 total équi marbre	Baryun	1		┤.		
Ammonium	Ammonium	mg/1 =	mg/l	Chair du fishiar agurag	Delta CO2T	Delta CO2 total équ	Stronti	um			ichiers de Calcu	LPL
Nitrite	Nitrite	mg/l =	mg/l	Nom du Fichier source Excel	Calcium	Calcium équi marbre					Enregistrer tous le	s fichiers LPL
Fer divalent	Fer divalent	mg/1 =	mg/l	(ne l'indiquer que s'il est fixe)							qui oni oto odiodi	
Manganèse	Manganèse	μg/1 =	µgЛ	Fichier-type-2.xlsx	Nombre maxim	m d'échaptillone : 1	10 🔺				Effacer de l'ecran	tous
Fluorure	Fluorure	mg/1 =	mg/l	Nom du fichier variable		an o concinenta .	•				- les tichiers LPL Ca	acules
Baryum	Baryum	μg/l =	μgΛ	Nom de la feuille du fichier]						
Strontium	Strontium	μg/1 =	μgΛ	output lims	Co	nfirmer		Annule	æ		Réinitia	iser

Luc Derreumaux Pierre Leroy

https://www.lplwin.

/39

La préparation des calculs

Ľ	🚺 lpi	LWin 6.01.02								
	Fich	ier Options /	Affichage	Fenêtres	Aide					
		Nouveau	Ctrl+N							
Ì.	2	Ouvrir	Ctrl+0							
		Importer à partir (de	•	Fichier I	Excel (XI, XIs, XIsx)		•		
l		Enregistrer	Ctrl+S		Importa	ition automatique d'u	un fichier Excel	•	Préparation des Calculs	1
I		Enregistrer Sous	Ctrl+A							
l		Enregister Tout	Ctrl+T							
l		Configuration Im	primante	•						
l	3	Imprimer		•						
l		Ouvrir exemple		•						
l		Enregistrer Exemp	ple							
l		200402-04371.LP6	5							
I		200504-05042.LP6	5							
I		200415-04592.LP6	5							
I		200415-04593.LP6	5							
I		Quitter	Ctrl+Q							
	_									

La préparation des calculs

)	Surge and all and	Descel des serveriture d'aux stations
appel des parametres d	Importation	Rappel des parametres d'exportation
Nom du fichier source	Fichier-type-2.xlsx	
Nom de la feuille	output lims	Fichies type 2 year
N° L/C Paramètres	1 - Nom de fichier variable	
N° L/C Résultats	3 🜩	Répertoire du Fichier Cible
N° L/C de l'identifiant principal des échantillo	2 🖨	uments Professionnels\CIFEC
		Nom de la Feuille Cible
	N° L/C de l'identifiant	output lims
ldentifiant secondaire	secondaire	Nouvelle Feuille Excel
		Gestion des Fichiers LPL
aramètres des dosages	et de calcul	Enregistrer tous les fichiers LPL
	ations de Calcul	ui ont ete calcules
		Effacer de l'écran tous
Nombre maximum d'e	échantillons 100 🛓	Ies fichiers calculés
		100

Luc Derreumaux Pierre Leroy

La préparation des calculs

Calcul automatique à partir d'un fichier Excel					
Rappel des paramètres d'importation	Rappel des paramètres d'exportation				
Nom du fichier	Fichier Excel Cible	LPLWin 6.01.	.02 s : 123	3456	Eau 02 Etape 0 🗖 🔍
source	Nom du Fichier Cible				
Nom de la feuille output lims	Fichier-type-2.xlsx	Paramètres	Valeur	s Unités	
Nom de fichier	Nouveau Fichier Excel	Température	Ð		
N° L/C Paramètres		Conductivité	84,7	µS/cm	
N° L/C Résultats 4	Répertoire du Fichier Cible	pH			
N° L/C de l'identifiant	auments Professionnels\CIFEC\	TH			
principal des échantillons		TA			
	New de la Facilla Cible	TAC	5	প	
		CO ₂ libre			
N° L/C de l'identifiant 3 ♣	output lims	Calcum Magnésium	8,59	mg/l	
secondaire	Nouvelle Feuille Excel		4,01	mg/i	
		Potassium	6	mg/i	
	Gestion des Fichiers LPL	Ammonium		mg/r	
		Fer Divalent			Nom : 200415-04592
Paramètres des dosages et de calcul	ui ont été calculés	Manganèse			
Options de Calcul		Chlorure	9,27	mg/l	TAC Calculer
	- Effacer de l'écran tous	Sulfate	5,72	mg/l	
	les fichiers calculés	Nitrate	0	mg/l	TA/CO2I
Nombre maximum d'échantillons		Nitrite			
0		Fluorure	_		Valeur de Ks
Extraction des données terminée.		O ₂ dissous			
Vérification des analyses terminée.		Baryum	_		
L'analyse de l'échantillon N° 200415-04592 est incomplète, les calculs	s ne seront pas effectués pour cet échantillon :	Strontium			
Création des eaux et calculs terminés.					
Exportation terminée avec succès !	houton "Annuler/Fermer"				
vous pouvez maintenant quitter la presente renette en cliquant sur le t	Souton Annuler/Permer .				
1					

Luc Derreuma Pierre Leroy

ET EN OPTIONS... 2) AGRESSIVITÉ VIS-À-VIS DES BÉTONS

La feuille d'indices

ET EN OPTIONS... 2) AGRESSIVITÉ VIS-À-VIS DES BÉTONS

Sur le graphique Legrand & Poirier

ET EN OPTIONS... 2) AGRESSIVITÉ VIS-À-VIS DES BÉTONS

Sur le graphique

MERCI DE VOTRE ATTENTION

Viscatchas (Santiago) 1986 Photo PL

Luc Derreumaux Pierre Leroy

https://www.lplwin.fr

/39

